break a palindrome hackerrank solution
in python

Break a palindrome is a popular problem on HackerRank that challenges
programmers to manipulate strings in a specific way. The goal is to determine
whether it is possible to change a single character in a given palindrome
string to make it no longer a palindrome. This problem tests not only string
manipulation skills but also logical reasoning and an understanding of
palindrome properties. In this article, we will explore the problem
statement, discuss various approaches to solving it in Python, and provide a
detailed solution with explanations.

Understanding the Problem

A palindrome is a string that reads the same forward and backward. For
example, "radar" and "level" are palindromes. The challenge of breaking a
palindrome involves modifying one character in the string so that it no
longer remains a palindrome.

Problem Statement

Given a palindrome string, you need to determine if it is possible to change
exactly one character such that the resulting string is not a palindrome. If
it is possible, return the new string; otherwise, return "IMPOSSIBLE".

Constraints

- The input string will have a length between 1 and 100.
- The string will consist only of lowercase English letters.

Example

- Input: "aba"
- Qutput: "aaa" (changing 'b' to 'a' does not make it a palindrome)

- Input: "aa"
- Output: "IMPOSSIBLE" (changing either 'a' results in a palindrome)

This example illustrates two different scenarios: one where it is possible to
break the palindrome and another where it is not.

Approach to Solve the Problem

To solve the "Break a palindrome" problem, we can follow these steps:



1. Check for Edge Cases:

- If the string has a length of 1, it's impossible to break the palindrome.
- If the string is made up of the same character (e.g., "aaa"), changing one
character will still yield a palindrome.

2. Iterate through the String:

- Check each character from the beginning of the string up to the middle. If
we find a character that is not 'a', we can change it to 'a'. This is because
'a' is the lexicographically smallest character, and changing the first non-
'a' character will help us achieve a non-palindrome string effectively.

3. Handle the Last Resort:

- If the string is made up entirely of 'a's (e.g., "aaaa"), the only valid
change would be to change the last character to 'b', resulting in a non-
palindromic string.

4. Return the Result:
- If a valid non-palindrome string is formed, return it; otherwise, return
"IMPOSSIBLE".

Algorithm Steps

Input Validation: Check if the string length is 1.

Check for Uniform Characters: If all characters are the same.
Modify String: Change the first non-'a' character to 'a'.

4. Return or Modify Last Character: If all were 'a's, change the last
character to 'b'.

5. Output the Result.

WN =

Python Implementation

Let's delve into the Python implementation of the above approach. Below is a
complete solution to the "Break a palindrome" problem:

" “python
def break palindrome(palindrome):
Step 1: Check for edge cases
if len(palindrome) ==
return "IMPOSSIBLE"

Step 2: Convert the string to a list for easy modification
palindrome list = list(palindrome)
n = len(palindrome list)

Step 3: Try to change the first non-'a' character to 'a'
for i in range(n // 2):
if palindrome list[i] != 'a':



palindrome list[i] = 'a
return ''.join(palindrome list)

Step 4: If all characters are 'a', change the last character to 'b'
palindrome list[n - 1] = 'b"'
return ''.join(palindrome list)

Example Usage

if npame == " main_ ":
test cases = ["aba", "aa", "aaaa", "abccba"]

for test in test cases:

print(f"Input: {test} -> Output: {break palindrome(test)}")

Explanation of the Code

- Function Definition: The function “break palindrome’ takes a single
argument, the palindrome string.

- Edge Case Check: If the length of the string is 1, return "IMPOSSIBLE".

- List Conversion: The string is converted to a list, as strings in Python
are immutable.

- Loop through Half the String: We only need to check up to half of the
string because we are looking for symmetry.

- Character Replacement: If a non-'a' character is found, it is replaced with
‘a', and the modified string is returned.

- Final Check: If all characters were 'a', the last character is changed to
‘b', ensuring a non-palindrome string.

Complexity Analysis

- Time Complexity: The time complexity of the solution is 0(n), where n is
the length of the palindrome string. This is because we may need to iterate
through the string once.

- Space Complexity: The space complexity is 0(n) due to the conversion of the
string to a list for modification.

Conclusion

The "Break a palindrome" challenge on HackerRank is an excellent way to
practice string manipulation and condition checking in Python. By following
the approach outlined in this article, programmers can effectively solve the
problem and understand the underlying principles of palindrome properties.

Using logical reasoning and efficient string operations, we can determine the
best way to alter a palindrome, ensuring that we meet the problem's



constraints and requirements. Whether you're a beginner or an experienced
coder, this problem is a great exercise for improving your coding skills.

With the provided implementation and explanation, you should now have a solid
foundation to tackle similar problems and enhance your programming abilities.
Happy coding!

Frequently Asked Questions

What is the main objective of the 'Break a
Palindrome' problem on HackerRank?

The main objective is to determine the minimum number of characters to
replace in a palindrome string to make it non-palindromic. If it's
impossible, return an empty string.

What is a palindrome?

A palindrome is a string that reads the same forward and backward, such as
'radar' or 'level'.

What are the constraints for the string provided in
the 'Break a Palindrome' problem?

The string length is between 1 and 100, and it contains only lowercase
English letters.

What is a common approach to solve the 'Break a
Palindrome' problem in Python?

A common approach is to check if the string has more than one character, then
iterate through the first half of the string, replacing the first non-'a'
character with 'a' to break the palindrome. If all characters are 'a',
replace the last character with 'b'.

Can the 'Break a Palindrome' solution handle strings
of length 1?

No, if the input string is of length 1, it cannot be converted to a non-
palindrome, so the solution should return an empty string.

What is the expected time complexity of a solution
for the 'Break a Palindrome' problem?

The expected time complexity is 0(n), where n is the length of the string, as



we may need to traverse through half of the string to find the character to
change.

Break A Palindrome Hackerrank Solution In Python

Find other PDF articles:
https://staging.liftfoils.com/archive-ga-23-09/Book?dataid=t]r86-3710&title=birds-vs-robots-math-ga

Break A Palindrome Hackerrank Solution In Python

Back to Home: https://staging.liftfoils.com


https://staging.liftfoils.com/archive-ga-23-10/Book?docid=XBd47-7441&title=break-a-palindrome-hackerrank-solution-in-python.pdf
https://staging.liftfoils.com/archive-ga-23-09/Book?dataid=tJr86-3710&title=birds-vs-robots-math-game.pdf
https://staging.liftfoils.com/archive-ga-23-09/Book?dataid=tJr86-3710&title=birds-vs-robots-math-game.pdf
https://staging.liftfoils.com

