busy intersection hackerrank solution
github

Busy Intersection HackerRank Solution GitHub is a topic that resonates with
many programming enthusiasts and competitive coders. HackerRank is a popular
platform for coding challenges and contests, where programmers can test their
skills and improve their coding proficiency. One such challenge is the "Busy
Intersection" problem, which tests one's ability to apply algorithmic
thinking and data structure knowledge to solve real-world scenarios. This
article delves into the details of the Busy Intersection problem on
HackerRank, the strategies for solving it, and how to find solutions on
GitHub.

Understanding the Busy Intersection Problem

The "Busy Intersection" problem typically involves simulating a traffic
scenario where multiple vehicles approach an intersection. The objective is
often to determine how many vehicles can efficiently cross the intersection
without causing congestion, or to calculate the time taken for all vehicles
to clear the intersection.

Problem Statement

While the specifics may vary, a common version of the problem might involve:

- A set number of vehicles approaching an intersection.

- Each vehicle has a defined entry time and a duration for which it will
occupy the intersection.

- The goal is to determine the maximum number of vehicles that can pass
through the intersection during a specified time frame without overlapping.

Input and Output Format

Typically, the input format for the Busy Intersection problem might look like
this:

- The first line contains an integer "n°, representing the number of
vehicles.

- The next 'n° lines each contain two integers: “entry time and "duration’
for each vehicle.

The output would usually be a single integer indicating the maximum number of
vehicles that can pass through the intersection.



Approaching the Solution

To solve the Busy Intersection problem efficiently, you can adopt a
systematic approach. Here are the general steps:

1. Parse the Input: Read the number of vehicles and their respective entry
times and durations.

2. Generate Event Points: For each vehicle, create two events: one for the
entry and one for the exit (entry time and entry time + duration).

3. Sort Events: Sort these events based on their time, ensuring that entry
events are processed before exit events if they occur at the same time.

4. Simulate the Intersection: Use a counter to track the number of vehicles
in the intersection at any given time and maximize the count while ensuring
no two vehicles overlap.

Algorithm: Greedy Approach

A greedy algorithm can efficiently solve this problem. Here's a brief
overview of the approach:

- Initialization: Start with an empty intersection and a count of vehicles.
- Iterate through Events: Loop through the sorted event list:

- If you encounter an entry event and the intersection is empty, allow the
vehicle to enter and increment the count.

- If you encounter an exit event, remove the vehicle from the intersection.
- Result: The count at the end of the iteration will give the maximum number
of vehicles that can cross.

Implementation Example

Here is a simple Python implementation of the Busy Intersection solution:

““python
def busy intersection(vehicles):
events = []

Generate events for entry and exit

for entry time, duration in vehicles:
events.append((entry time, 'enter'))
events.append((entry time + duration, ‘exit'))

Sort events: first by time, then by type of event
events.sort(key=lambda x: (x[0], x[1] == 'exit'))

max_vehicles = 0
current vehicles = 0



Simulate the intersection

for time, event in events:

if event == 'enter':

current vehicles += 1

max vehicles = max(max vehicles, current vehicles)
else:

current_vehicles -=1

return max_ vehicles

Example usage
vehicles = [(1, 2), (2, 1), (3, 3)]
print(busy intersection(vehicles)) Output: 2

Finding Solutions on GitHub

GitHub is a treasure trove of coding solutions, collaborative projects, and
repositories dedicated to various coding challenges, including those from
HackerRank. To find solutions for the Busy Intersection problem, you can
follow these steps:

1. Search GitHub: Use the search bar to look for “Busy Intersection
HackerRank solution”. You can also add programming languages to narrow down
results (e.g., "Busy Intersection HackerRank solution Python").

2. Explore Repositories: Look through various repositories that might contain
solutions for multiple HackerRank problems. Developers often group similar
challenges together.

3. Check for Readme Files: Many GitHub repositories include a Readme file
that outlines how to use the code, the problem statement, and sometimes even
the test cases.

4., Look for Forks and Stars: Check the number of forks and stars on
repositories to gauge their popularity and reliability.

5. Contribute: If you come up with an efficient solution or improvements on

existing solutions, consider contributing back to the community by creating a
pull request.

Best Practices for Coding Challenges

When tackling coding challenges like the Busy Intersection problem, it is
essential to adopt best practices:



- Read the Problem Statement Carefully: Ensure you understand the
requirements and constraints before jumping into coding.

- Plan Your Solution: Spend a few minutes planning your approach and writing
pseudocode if necessary.

- Test with Edge Cases: Consider edge cases and test your solution against
them.

- Optimize: Once you have a working solution, think about ways to optimize it
for better performance.

- Comment Your Code: Write comments to explain the logic, especially if your
solution is complex.

Conclusion

The Busy Intersection problem is an excellent example of how algorithmic
thinking can be applied to real-world scenarios. By understanding the problem
statement, breaking it down into manageable steps, and employing a greedy
algorithm, one can efficiently solve this challenge. Moreover, platforms like
GitHub serve as valuable resources for finding solutions, sharing knowledge,
and collaborating with others in the coding community. Embracing these
practices not only enhances your coding skills but also prepares you for more
complex challenges in the future.

Frequently Asked Questions

What is the 'Busy Intersection' problem on
HackerRank?

The 'Busy Intersection' problem on HackerRank involves finding the number of
intersections that are busy based on car movements in a grid-like city
layout, requiring efficient algorithmic solutions to handle potentially large
input sizes.

Where can I find solutions to the 'Busy
Intersection' problem on GitHub?

You can find various implementations and solutions to the 'Busy Intersection'
problem by searching for repositories on GitHub with keywords like 'Busy
Intersection HackerRank solution' or by exploring popular coding
repositories.

What programming languages are commonly used for the
'Busy Intersection' solutions on GitHub?

Common programming languages used for the 'Busy Intersection' solutions
include Python, Java, C++, and JavaScript, with many solutions demonstrating



different approaches to the problem.

Are there any specific algorithmic techniques used
in 'Busy Intersection' solutions?

Yes, solutions often utilize algorithmic techniques such as coordinate
compression, sweep line algorithms, and data structures like segment trees or
binary indexed trees to efficiently count busy intersections.

How can I improve my solution for the 'Busy
Intersection' problem?

To improve your solution, focus on optimizing time complexity by using
efficient data structures, reducing redundant calculations, and ensuring you
understand the underlying mathematical principles of intersection counting.

What are common pitfalls when solving the 'Busy
Intersection' problem?

Common pitfalls include misunderstanding the input format, miscalculating the
intersections based on vehicle paths, and not optimizing for large datasets
which can lead to time limit exceeded errors.

Can I collaborate with others on GitHub for solving
'Busy Intersection'?

Yes, GitHub allows for collaboration through features like forking
repositories, creating pull requests, and discussing issues, making it a
great platform to work with others on solutions to the 'Busy Intersection’
problem.

Busy Intersection Hackerrank Solution Github

Find other PDF articles:
https://staging.liftfoils.com/archive-ga-23-08/pdf?docid={]Y26-3692&title=bachelor-of-science-in-ind
ustrial-organizational-psychology.pdf

Busy Intersection Hackerrank Solution Github

Back to Home: https://staging.liftfoils.com



https://staging.liftfoils.com/archive-ga-23-10/files?dataid=FbV40-7028&title=busy-intersection-hackerrank-solution-github.pdf
https://staging.liftfoils.com/archive-ga-23-08/pdf?docid=fJY26-3692&title=bachelor-of-science-in-industrial-organizational-psychology.pdf
https://staging.liftfoils.com/archive-ga-23-08/pdf?docid=fJY26-3692&title=bachelor-of-science-in-industrial-organizational-psychology.pdf
https://staging.liftfoils.com

