
c programming exercises with solutions
C programming exercises with solutions are essential for anyone looking to
enhance their coding skills in C. C is a powerful general-purpose programming
language that offers a rich set of features for system programming, game
development, and application development. Engaging in practical exercises not
only solidifies theoretical knowledge but also equips programmers with
problem-solving skills and the ability to write efficient code. This article
will explore a variety of C programming exercises, along with their
solutions, to help you practice and improve your C programming capabilities.

Understanding Basic Concepts

Before diving into exercises, it’s crucial to understand some fundamental
concepts of C programming. This section will lay the groundwork for the
exercises that follow.

1. Data Types
C supports several data types, including:
- `int` for integers
- `float` for floating-point numbers
- `double` for double-precision floating-point numbers
- `char` for characters

2. Control Structures
Control structures dictate the flow of the program:
- Conditional statements: `if`, `else if`, `else`, `switch`
- Loops: `for`, `while`, `do while`

3. Functions
Functions in C help modularize code. A function consists of:
- A return type
- A name
- Parameters (if any)
- A body containing code

4. Arrays and Strings
Arrays store multiple values of the same type, while strings are arrays of
characters ending with a null character (`\0`).

Exercise 1: Calculate the Factorial of a Number

Problem Statement: Write a program that calculates the factorial of a number
entered by the user.

Solution:
```c
include

int factorial(int n) {
if (n == 0) {
return 1; // Base case
}
return n factorial(n - 1); // Recursive call
}

int main() {
int number;
printf("Enter a number: ");
scanf("%d", &number);

if (number < 0) {
printf("Factorial is not defined for negative numbers.\n");
} else {
printf("Factorial of %d is %d\n", number, factorial(number));
}
return 0;
}
```

Exercise 2: Find the Largest Element in an
Array

Problem Statement: Create a program to find the largest element in a given
array of integers.

Solution:
```c
include

int main() {
int n, i, largest;
printf("Enter the number of elements: ");
scanf("%d", &n);

int arr[n];
printf("Enter %d integers:\n", n);



for (i = 0; i < n; i++) {
scanf("%d", &arr[i]);
}

largest = arr[0]; // Assume first element is the largest
for (i = 1; i < n; i++) {
if (arr[i] > largest) {
largest = arr[i];
}
}

printf("Largest element is %d\n", largest);
return 0;
}
```

Exercise 3: Reverse a String

Problem Statement: Write a program to reverse a string entered by the user.

Solution:
```c
include
include

int main() {
char str[100], reversed[100];
int i, j = 0;

printf("Enter a string: ");
fgets(str, sizeof(str), stdin); // Get user input including spaces
str[strcspn(str, "\n")] = 0; // Remove newline character

for (i = strlen(str) - 1; i >= 0; i--) {
reversed[j++] = str[i];
}
reversed[j] = '\0'; // Null-terminate the reversed string

printf("Reversed string: %s\n", reversed);
return 0;
}
```

Exercise 4: Check for Prime Number

Problem Statement: Create a program to check if a number is prime.

Solution:
```c
include

int is_prime(int n) {
if (n <= 1) return 0;
for (int i = 2; i i <= n; i++) {
if (n % i == 0) return 0; // Not prime
}
return 1; // Prime
}

int main() {
int number;
printf("Enter a number: ");
scanf("%d", &number);

if (is_prime(number)) {
printf("%d is a prime number.\n", number);
} else {
printf("%d is not a prime number.\n", number);
}
return 0;
}
```

Exercise 5: Fibonacci Series

Problem Statement: Write a program to generate Fibonacci series up to n
terms.

Solution:
```c
include

int main() {
int n, first = 0, second = 1, next;
printf("Enter the number of terms: ");
scanf("%d", &n);

printf("Fibonacci Series: %d, %d", first, second);
for (int i = 3; i <= n; i++) {
next = first + second;
printf(", %d", next);
first = second;
second = next;
}
printf("\n");
return 0;



}
```

Exercise 6: Count Vowels and Consonants

Problem Statement: Create a program to count vowels and consonants in a
string.

Solution:
```c
include
include
include

int main() {
char str[100];
int vowels = 0, consonants = 0;

printf("Enter a string: ");
fgets(str, sizeof(str), stdin);
str[strcspn(str, "\n")] = 0; // Remove newline character

for (int i = 0; i < strlen(str); i++) {
char ch = tolower(str[i]);
if (ch >= 'a' && ch <= 'z') {
if (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u') {
vowels++;
} else {
consonants++;
}
}
}

printf("Vowels: %d, Consonants: %d\n", vowels, consonants);
return 0;
}
```

Exercise 7: Sort an Array

Problem Statement: Write a program to sort an array of integers in ascending
order using the bubble sort algorithm.

Solution:
```c
include



int main() {
int n, i, j, temp;
printf("Enter the number of elements: ");
scanf("%d", &n);

int arr[n];
printf("Enter %d integers:\n", n);
for (i = 0; i < n; i++) {
scanf("%d", &arr[i]);
}

for (i = 0; i < n - 1; i++) {
for (j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// Swap arr[j] and arr[j + 1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}

printf("Sorted array: ");
for (i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
```

Exercise 8: Palindrome Checker

Problem Statement: Write a program to check if a string is a palindrome.

Solution:
```c
include
include

int main() {
char str[100], reversed[100];
printf("Enter a string: ");
fgets(str, sizeof(str), stdin);
str[strcspn(str, "\n")] = 0; // Remove newline character

strcpy(reversed, str);
strrev(reversed); // Reverse the string



if (strcmp(str, reversed) == 0) {
printf("%s is a palindrome.\n", str);
} else {
printf("%s is not a palindrome.\n", str);
}
return 0;
}
```

Conclusion

Engaging in C programming exercises with solutions is a practical way to
develop your programming skills. The exercises presented in this article
cover a range of topics, from basic operations to more complex algorithms.
Practicing these problems will not only enhance your coding proficiency but
also deepen your understanding of the fundamental concepts of C programming.
As you progress, consider challenging yourself with more complex problems,
and explore data structures and algorithms to further your knowledge.
Remember, consistent practice is key to becoming a proficient programmer!

Frequently Asked Questions

What are some beginner-friendly C programming
exercises?
Beginner-friendly exercises include writing a program to calculate the
factorial of a number, creating a simple calculator, or implementing a
program to swap two numbers using a temporary variable.

How can I find the largest number in an array using
C?
You can iterate through the array using a loop, comparing each element to a
variable that holds the largest value found so far, updating it as necessary.

What is a common exercise for understanding pointers
in C?
A common exercise is to create a function that swaps two integers using
pointers, which helps reinforce the concept of memory addresses in C.

Can you provide a solution for reversing a string in

C?
To reverse a string, you can use two pointers: one at the start and one at
the end of the string, swapping characters while moving the pointers towards
the center.

What is a good exercise for practicing file handling
in C?
A good exercise is to write a program that reads data from a file, processes
it (like counting the number of lines), and writes the results to another
file.

How do I implement a simple linked list in C?
You can create a struct for the linked list nodes, then implement functions
for adding, deleting, and displaying nodes to practice linked list
operations.

What C program can help me understand recursion?
A classic exercise is to write a recursive function to compute the Fibonacci
sequence, demonstrating how recursion can simplify certain problems.

How can I create a multiplication table in C?
You can use nested loops: an outer loop for the rows (1 to 10) and an inner
loop for the columns (1 to 10), multiplying the row and column indices to
fill the table.

What is an exercise for sorting algorithms in C?
Implementing bubble sort or quicksort on an array of integers is a great way
to practice sorting algorithms, allowing you to compare efficiency and
performance.

How do I create a basic ATM program in C?
You can create an ATM program by using conditional statements to handle
different operations like 'check balance', 'deposit', and 'withdraw', while
maintaining user account information.

C Programming Exercises With Solutions

Find other PDF articles:
https://staging.liftfoils.com/archive-ga-23-16/Book?trackid=GYk92-3509&title=dafont-cricut-writing-

https://staging.liftfoils.com/archive-ga-23-11/pdf?docid=tLf73-1271&title=c-programming-exercises-with-solutions.pdf
https://staging.liftfoils.com/archive-ga-23-16/Book?trackid=GYk92-3509&title=dafont-cricut-writing-fonts.pdf

fonts.pdf

C Programming Exercises With Solutions

Back to Home: https://staging.liftfoils.com

https://staging.liftfoils.com/archive-ga-23-16/Book?trackid=GYk92-3509&title=dafont-cricut-writing-fonts.pdf
https://staging.liftfoils.com

