
complementary pairs hackerrank
solution
Complementary pairs Hackerrank solution is a common challenge faced by many
programmers seeking to improve their coding skills. The problem tests one's
understanding of algorithms, data structures, and logical reasoning. In this
article, we will delve into the problem statement, explore various methods to
solve it, analyze the time and space complexity of each approach, and present
a comprehensive solution. By the end of this article, you will have a solid
understanding of how to tackle the complementary pairs problem effectively.

Understanding the Problem Statement

The complementary pairs problem typically involves an array of integers and a
target sum. The goal is to find all unique pairs of integers in the array
that add up to the target sum. For example, given an array of integers and a
target sum, the task is to identify pairs (a, b) such that:

1. a + b = target sum
2. a and b are distinct elements in the array
3. The order of the pairs does not matter, meaning (a, b) is considered the
same as (b, a).

Example Problem

Consider the following example:

- Input:
- Array: [1, 2, 3, 4, 5]
- Target sum: 5

- Output:
- Pairs: (1, 4), (2, 3)

In this case, the pairs (1, 4) and (2, 3) are the unique combinations that
sum to the target value of 5.

Approaches to Solve the Problem

To tackle the complementary pairs problem, several approaches can be
employed. Below are three common methods:



1. Brute Force Approach

The brute force method involves checking every possible pair of integers in
the array and determining if their sum equals the target value. This approach
is simple but inefficient.

- Steps:
1. Initialize an empty list to store the resulting pairs.
2. Use two nested loops to iterate through each element in the array.
3. For each pair of elements, check if their sum equals the target.
4. If it does, add the pair to the result list.

- Time Complexity: O(n^2), where n is the number of elements in the array.
- Space Complexity: O(1) if we don't count the space used for storing pairs.

2. Using a Hash Map

A more efficient approach involves using a hash map (or dictionary) to track
the occurrences of each number in the array. This method reduces the time
complexity significantly.

- Steps:
1. Create an empty hash map to store the counts of each number.
2. Iterate through the array and populate the hash map.
3. Iterate through the array again to find pairs:
- For each element, calculate the required complement (target - current
element).
- Check if the complement exists in the hash map.
- Ensure the pair is unique by using a set to store results.

- Time Complexity: O(n), where n is the number of elements in the array.
- Space Complexity: O(n) for storing the hash map.

3. Sorting and Two-Pointer Technique

Another efficient method involves sorting the array first and then employing
a two-pointer technique to find pairs.

- Steps:
1. Sort the array.
2. Initialize two pointers: one at the beginning (left) and one at the end
(right) of the array.
3. While the left pointer is less than the right pointer:
- Calculate the sum of the elements at the left and right pointers.
- If the sum equals the target, store the pair and move both pointers inward.
- If the sum is less than the target, move the left pointer to the right.



- If the sum is greater than the target, move the right pointer to the left.

- Time Complexity: O(n log n) due to sorting, followed by O(n) for the two-
pointer traversal.
- Space Complexity: O(1) if we don't count the space for the resulting pairs.

Choosing the Optimal Solution

When deciding which method to use, consider factors such as the size of the
input array and the need for efficiency. Here’s a summary of when to use each
approach:

- Brute Force:
- Use when the input size is small and simplicity is preferred over
efficiency.

- Hash Map:
- Best for larger input sizes where performance is critical and extra space
is acceptable.

- Two-Pointer Technique:
- Ideal for sorted arrays and when space efficiency is a priority.

Implementing the Solution

Now, let’s look at the implementation of the hash map approach, which
balances efficiency and simplicity.

```python
def find_complementary_pairs(arr, target):
pairs = set()
num_count = {}

Populate the hash map with counts of each number
for num in arr:
if num in num_count:
num_count[num] += 1
else:
num_count[num] = 1

Find pairs
for num in arr:
complement = target - num
if complement in num_count:
Ensure we have distinct elements
if (num != complement) or (num_count[num] > 1):



pairs.add(tuple(sorted((num, complement))))

return list(pairs)

Example usage
array = [1, 2, 3, 4, 5]
target_sum = 5
result = find_complementary_pairs(array, target_sum)
print(result) Output: [(1, 4), (2, 3)]
```

Explanation of the Code

- We initialize a set called `pairs` to store unique pairs and a dictionary
called `num_count` to count occurrences of each number.
- The first loop fills the `num_count` dictionary.
- In the second loop, we calculate the complement for each number and check
if it exists in the dictionary. If it does, we ensure that the elements are
distinct.
- Finally, we return the list of unique pairs.

Conclusion

The complementary pairs Hackerrank solution is a classic problem that can be
approached using various methods, each with its own advantages and
disadvantages. Understanding the strengths of each approach allows
programmers to select the most suitable solution based on the context of the
problem. By implementing efficient algorithms, such as the hash map method,
one can solve the problem with optimal time and space complexity. Whether you
are preparing for coding interviews or simply looking to enhance your
programming skills, mastering such problems is essential for any aspiring
developer.

Frequently Asked Questions

What is the complementary pairs problem on
HackerRank?
The complementary pairs problem on HackerRank involves finding pairs of
integers in an array that add up to a specific target sum.

How do you approach solving the complementary pairs



problem?
To solve the problem, you can use a hash map to store the frequency of each
number and then iterate through the array to check if the complement (target
sum - current number) exists in the map.

What is the time complexity of the optimal solution
for complementary pairs?
The optimal solution using a hash map has a time complexity of O(n), where n
is the number of elements in the array.

Can the complementary pairs problem be solved using
a brute force approach?
Yes, a brute force approach can be used by checking all pairs of numbers in
nested loops, but this has a time complexity of O(n^2), which is less
efficient.

What edge cases should be considered when solving
the complementary pairs problem?
Edge cases include empty arrays, arrays with all identical elements, and
cases where no pairs exist that sum to the target.

How do you handle duplicate numbers in the
complementary pairs solution?
When handling duplicates, you should count how many times each number appears
and calculate the number of valid pairs accordingly.

What programming languages are commonly used to
implement the complementary pairs solution on
HackerRank?
Common programming languages for this problem include Python, Java, C++, and
JavaScript, as HackerRank supports multiple languages.

Is there a built-in function in Python that can help
solve the complementary pairs problem?
While there is no built-in function specifically for complementary pairs, the
'collections.Counter' class can be used to easily count occurrences of
elements.



What is the output format expected in the
complementary pairs problem on HackerRank?
The output format typically requires the number of pairs found or the
specific pairs listed, depending on the problem statement.

Are there variations of the complementary pairs
problem that can be found on HackerRank?
Yes, variations may include constraints like finding unique pairs, limiting
the search to specific ranges, or using multiple arrays.

Complementary Pairs Hackerrank Solution

Find other PDF articles:
https://staging.liftfoils.com/archive-ga-23-02/pdf?ID=WDm19-4221&title=5e-druid-spells-guide.pdf

Complementary Pairs Hackerrank Solution

Back to Home: https://staging.liftfoils.com

https://staging.liftfoils.com/archive-ga-23-14/Book?docid=JQP80-1802&title=complementary-pairs-hackerrank-solution.pdf
https://staging.liftfoils.com/archive-ga-23-02/pdf?ID=WDm19-4221&title=5e-druid-spells-guide.pdf
https://staging.liftfoils.com

