
core java practical interview
questions
Core Java practical interview questions are essential for candidates seeking
jobs that require a strong understanding of Java programming. These questions
not only evaluate a candidate's theoretical knowledge but also gauge their
practical skills in tackling real-world problems using Java. In an ever-
evolving tech landscape, being well-prepared with practical interview
questions can significantly boost your chances of landing a job.

The following article will delve into various categories of core Java
practical interview questions, offering insights into what interviewers often
look for, as well as providing sample questions that can help candidates
prepare effectively.

Understanding Core Java Concepts

Before diving into practical interview questions, it's crucial to understand
that core Java encompasses the fundamental aspects of the Java programming
language. This includes familiarity with object-oriented programming (OOP)
principles, data types, control structures, exception handling, and Java
collections.

Key OOP Principles

1. Encapsulation: The bundling of data (attributes) and methods (functions)
that operate on the data into a single unit, or class.
2. Inheritance: The mechanism by which one class can inherit the properties
and methods of another class.
3. Polymorphism: The ability of a method to perform different tasks based on
the object invoking it.
4. Abstraction: The concept of hiding complex implementation details and
showing only the essential features of an object.

Practical Interview Questions

Now, let's explore various categories of core Java practical interview
questions that candidates may encounter during interviews.



1. Object-Oriented Programming Questions

- What is method overloading and method overriding? Provide examples.
- Method Overloading: This occurs when multiple methods in the same class
have the same name but different parameters.
- Example:
```java
class MathUtils {
int add(int a, int b) {
return a + b;
}
double add(double a, double b) {
return a + b;
}
}
```
- Method Overriding: This happens when a subclass provides a specific
implementation for a method that is already defined in its superclass.
- Example:
```java
class Animal {
void sound() {
System.out.println("Animal makes sound");
}
}
class Dog extends Animal {
void sound() {
System.out.println("Dog barks");
}
}
```

- Explain the concept of interfaces and abstract classes. When would you use
one over the other?
- An interface is a reference type in Java, similar to a class, that can
contain only constants, method signatures, default methods, static methods,
and nested types. It cannot contain instance fields.
- An abstract class is a class that cannot be instantiated and may contain
abstract methods (methods without a body) as well as concrete methods
(methods with a body).
- Use an interface when you need to define a contract that various classes
can implement. Choose an abstract class when you want to share code among
closely related classes.

2. Data Structures and Collections

- What are the differences between List, Set, and Map in Java? Provide
examples of when to use each.



- List: An ordered collection that allows duplicate elements. Example:
`ArrayList`, `LinkedList`.
- Set: A collection that does not allow duplicate elements. Example:
`HashSet`, `TreeSet`.
- Map: An object that maps keys to values, with no duplicate keys allowed.
Example: `HashMap`, `TreeMap`.

Use List when you need to maintain an ordered collection with duplicates. Use
Set when uniqueness of elements is crucial. Use Map when you need to
associate keys with values.

- How do you remove duplicates from a List in Java? Provide a code example.
- You can convert the List to a Set and back to a List:
```java
List listWithDuplicates = Arrays.asList("A", "B", "A", "C");
Set setWithoutDuplicates = new HashSet<>(listWithDuplicates);
List uniqueList = new ArrayList<>(setWithoutDuplicates);
```

3. Exception Handling

- What is the difference between checked and unchecked exceptions? Provide
examples of each.
- Checked Exceptions: These are exceptions that are checked at compile-time.
Example: `IOException`, `SQLException`.
- Unchecked Exceptions: These are not checked at compile-time, and they are
subclasses of `RuntimeException`. Example: `NullPointerException`,
`ArrayIndexOutOfBoundsException`.

- How do you create a custom exception in Java? Provide an example.
- You can create a custom exception by extending the `Exception` class or any
of its subclasses.
```java
public class MyCustomException extends Exception {
public MyCustomException(String message) {
super(message);
}
}
```

4. Multithreading

- Explain the difference between `Runnable` and `Thread` in Java.
- `Runnable` is an interface that should be implemented by any class whose
instances are intended to be executed by a thread. `Thread` is a class that
represents a thread of execution in a program.
- Example of using `Runnable`:



```java
class MyRunnable implements Runnable {
public void run() {
System.out.println("Thread is running");
}
}
Thread thread = new Thread(new MyRunnable());
thread.start();
```

- What is synchronization, and why is it important in multithreading?
- Synchronization is a mechanism that ensures that two or more concurrent
threads do not simultaneously execute some particular program segment, which
can lead to race conditions. It's essential to maintain data integrity and
avoid inconsistent states.

5. Java 8 Features

- What are lambda expressions, and how do they simplify coding? Provide an
example.
- Lambda expressions provide a clear and concise way to represent one method
interfaces using an expression. They enable you to pass behavior as a
parameter to methods.
- Example:
```java
List names = Arrays.asList("John", "Jane", "Jack");
names.forEach(name -> System.out.println(name));
```

- Explain the Stream API and its advantages.
- The Stream API allows you to process sequences of elements (e.g.,
collections) in a functional style. It provides a way to perform operations
like filtering, mapping, and reducing in a more readable and concise manner.
- Advantages include:
- Ability to process data in parallel.
- Reduction in boilerplate code.
- Improved readability.

Conclusion

Preparing for core Java practical interview questions is vital for anyone
looking to excel in the software development field. By understanding the
fundamental concepts and practicing various scenarios, candidates can build
their confidence and improve their problem-solving skills. The ability to
articulate solutions clearly and demonstrate practical knowledge during
interviews can significantly influence hiring decisions. As you prepare,
remember that practical application of these concepts is just as important as



theoretical knowledge. Good luck!

Frequently Asked Questions

What is the difference between JDK, JRE, and JVM?
JDK (Java Development Kit) is a software development kit used to develop Java
applications. JRE (Java Runtime Environment) is the environment in which Java
programs run, containing the JVM (Java Virtual Machine) and libraries. JVM is
the engine that executes Java bytecode, converting it into machine code for
the host system.

Can you explain the concept of OOP in Java?
OOP (Object-Oriented Programming) in Java is based on four main principles:
Encapsulation (bundling data and methods), Inheritance (acquiring properties
from another class), Polymorphism (ability to take on many forms), and
Abstraction (hiding complex implementation details).

What are the main features of Java?
The main features of Java include platform independence (write once, run
anywhere), strong memory management, automatic garbage collection, multi-
threading support, and a rich API that provides various libraries for tasks
such as networking, I/O operations, and data manipulation.

What is the purpose of the 'static' keyword in Java?
'static' is a keyword used to indicate that a particular member (variable or
method) belongs to the class rather than instances of the class. This means
it can be accessed without creating an instance of the class and is shared
among all instances.

What is an interface in Java and how is it different
from an abstract class?
An interface in Java is a reference type that can contain only constants,
method signatures, default methods, static methods, and nested types. An
abstract class can have method implementations and state (fields). A class
can implement multiple interfaces but can inherit from only one abstract
class.

How does exception handling work in Java?
Exception handling in Java is performed using five keywords: try, catch,
finally, throw, and throws. Code that may throw an exception is placed inside
a 'try' block, and 'catch' blocks handle the exceptions. The 'finally' block



is executed after try/catch blocks, regardless of whether an exception
occurred, while 'throw' is used to explicitly throw an exception, and
'throws' is used in method signatures to declare exceptions that may be
thrown.

Core Java Practical Interview Questions

Find other PDF articles:
https://staging.liftfoils.com/archive-ga-23-03/files?ID=NcR13-7472&title=a-princess-guide-to-saving-
dragons.pdf

Core Java Practical Interview Questions

Back to Home: https://staging.liftfoils.com

https://staging.liftfoils.com/archive-ga-23-15/pdf?ID=hFD42-9504&title=core-java-practical-interview-questions.pdf
https://staging.liftfoils.com/archive-ga-23-03/files?ID=NcR13-7472&title=a-princess-guide-to-saving-dragons.pdf
https://staging.liftfoils.com/archive-ga-23-03/files?ID=NcR13-7472&title=a-princess-guide-to-saving-dragons.pdf
https://staging.liftfoils.com

